www.rsc.org/dalton

lton

Synthesis, X-ray structures and NIR chiroptical properties of a series of dinuclear lanthanide(III) complexes $[Ln_2{\mu-(S- or RS-pba)}_4(HBpz_3)_2]$; novel configurational chirality due to non-bonding $Ln \cdots O$ interactions †

Md. Abdus Subhan, Takayoshi Suzuki, Akira Fuyuhiro and Sumio Kaizaki*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan

Received 7th May 2003, Accepted 11th August 2003 First published as an Advance Article on the web 29th August 2003

Two series of mononuclear $[Ln^{III}(S - \text{ or } RS - \text{pba})(HBpz_3)_2]$ (Ln = Tm, Er, Ho) and dinuclear $[Ln_2{\mu-(S - \text{ or } RS - \text{pba})}_4 - (HBpz_3^{-})_2]$ (Ln = Yb, Ho, Gd, Dy, Nd) complexes (pba = RS- and/or S-2-phenyl butyrate, HBpz_3 = hydrotris(pyrazol-1-yl)borate) were prepared and their X-ray structures and NIR chiroptical properties investigated. Synthesis with a molar ratio 1 : 2 : 1 of Ln : KHBpz_3 : pba results in the formation of either mono- or dinuclear complexes, depending on the Ln(III) ionic radii: mononuclear complexes from Yb(III) to Ho(III) and dinuclear ones from Dy(III) to Nd(III). Only the dinuclear complexes for all of the Ln(III) studied were formed with a molar ratio 1 : 1 : 2 of Ln : KHBpz_3 : pba. X-Ray structural analysis confirmed dinuclear structures with CH $\cdots \pi$ interactions and linear B \cdots Ln \cdots B arrangements for the Ln(μ -RS-pba)_4Ln(HBpz_3)_2 (Yb, Ho, Dy, Gd and Nd) complexes and a skew bent arrangement of B \cdots Ln \cdots B leading to configurational chirality in the Dy(μ -S-pba)_4Dy(HBpz_3)_2 complex. Comparison of NIR chiroptical spectra in the 4f-4f transitions with those of the corresponding Cr–Ln complexes, [(acac)_2Cr(ox)Ln(HBpz_3)_2] suggests that the 4f-4f CD intensities arise from configurational chirality, probably due to the skew bent B \cdots Ln \cdots B disposition.

Introduction

Recently, there have been several investigations on configurational chiral Ln(III) complexes from respective points of view.¹ In the last few years we have been studying chiroptical spectra in the 4f-4f transitions of 3d-4f dinuclear complexes.²⁻⁵ In this context, our recent paper^{3a} was concerned with NIR CD spectra of the 4f-4f transitions of the configurational chiral $3d-4f (\Lambda-\Delta)-[(acac)_2Cr(ox)Ln(HBpz_3)_2] (Ln = Dy and Yb)$ complexes with no asymmetric carbon. This followed the NIR CD study along most of the series of the 3d-4f Cr-Ln^{3b} and the Co-Ln complexes⁴ as well as a more recent study on variable temperature emission spectra,⁵ which are devoted to the evaluation of the structural and NIR spectroscopic properties of the Cr(ox)Ln or Co(ox)Ln complexes. In our first paper,^{3a} configurational chirality around the Yb(III) ion in the Cr(ox)Yb complex induced by optically resolved complex ligand Λ -[Cr(acac)₂(ox)]⁻ was examined in comparison to vicinal chirality in Λ, Δ -[Yb(S-pba)(HBpz_3)₂] (pba = RS- and/or S-2phenyl butyrate, HBpz₃ = hydrotris(pyrazol-1-yl)borate). We attempted to prepare a whole series of mononuclear [Ln(S- or RS-pba)(HBpz₃)₂] complexes to compare with Cr(ox)Ln. The complexes [Ln(S- or RS-pba)(HBpz₃)₂] could be isolated for the heavier lanthanide(III) ions from Yb(III) to Ho(III). However, for the lighter Ln^{III} ions from Nd to Dy, preparation of [Ln(S- orRS-pba)(HBpz₃)₂] was unsuccessful, and complexes [Ln(S- or RS-pba)₂(HBpz₃)] were isolated with an apparently seven-coordinate structure. This chemical composition of the latter complexes is identical with that of the known tetracarboxylate bridged dinuclear Y(III) complex,⁶ which takes a dinuclear structure analogous to that of the tetracarboxylate bridged Ce(III)⁷ or Eu(III) and Nd(III) dimers.⁸ This prompted us to perform X-ray analysis on [Ln(S-pba)₂(HBpz₃)], for which the near infrared photochemical properties have been preliminarily

† Electronic supplementary information (ESI) available: ORTEP views of $[Ln_2{\mu-(RS-pba)}_4(HBpz_3)_2]$ (Ln = Yb, Dy, Gd or Nd) and $[Dy_2{\mu-(S-pba)}_4(HBpz_3)_2]$; NIR and CD spectra of $[Ln_2{\mu-(S-pba)}_4(HBpz_3)_2]$ (Ln = Ho, Dy or Nd); MCD spectra of $[Ln_2{\mu-(RS-pba)}_4(HBpz_3)_2]$ (Ln = Ho, Dy or Nd). See http://www.rsc.org/suppdata/dt/b3/b304928k/

reported.^{5b} Over the last 15 years, dinuclear Ln–Ln complexes with bridging carboxylate type ligands have been studied from different view points.⁶⁻¹⁰ The latest study on the benzoate bridged Ln(III) complexes focused on the synthesis, X-ray structures and emission properties, but the targeted lanthanide ions were limited to only three Gd and Tb complexes.¹⁰ Though the metal–metal interactions and chiroptical properties for the tetracarboxylate bridged dinuclear transition metal complexes of the type, $M_2(O_2CR)_4L_2$ have been studied (showing only vicinal chirality due to optically active RCO₂) for a few decades,¹¹ there are no systematic chiroptical studies on this type of Ln₂(O₂CR)₄L₂ complexes with configurational chirality.

We report here the synthesis of the mononuclear $[Ln(S- or RS-pba)(HBpz_3)_2]$ (Ln = Yb,³ Tm, Er and Ho) and dinuclear $[Ln_2{\mu-(S- or RS-pba)}_4(HBpz_3)_2]$ (Ln = Yb, Ho, Dy, Sm and Nd) complexes with a change from mononuclear to dinuclear formation at Dy, depending on the ionic radius of the lanthanide(III) ion and/or by controlling the ratio of Ln : pba : KHBpz_3. The NIR CD of the chiral $[Ln_2(\mu-S-pba)_4(HBpz_3)_2]$ complexes along with the absorption and MCD of their racemic *RS*-pba analogues were studied in relation with the X-ray structures of the (Yb–Yb, Ho–Ho, Dy–Dy, Nd–Nd) complexes.

Experimental

Synthesis of mononuclear and dinuclear carboxylato complexes

The mononuclear $[Ln(S- \text{ or } RS-\text{pba})(\text{HBpz}_3)_2]$ (Ln = Ho, Er, Tm, Yb) complexes were prepared with a molar ratio of 1:2:1(Ln : HBpz₃ : pba) using a previously described method (Method A).^{3a} The same Method A gave dinuclear complexes $[Ln_2\{\mu-(S- \text{ or } RS-\text{pba})\}_4(\text{HBpz}_3)_2]$ from Dy to Nd instead of the mononuclear ones. For this preparation, two products, one of which is soluble and the other insoluble in CH₂Cl₂, were obtained. The soluble one was found to be the dinuclear complex $[Ln_2\{\mu-(S- \text{ or } RS-\text{pba})\}_4(\text{HBpz}_3)_2]$, but the insoluble one was $[Ln(\text{HBpz}_3)_3]$.

The dinuclear complexes $[Ln_2{\mu-(S- \text{ or } RS-\text{pba})}_4(HBpz_3)_2]$ (Yb, Ho, Dy, Gd and Nd) were prepared by Method B where

 $\begin{array}{l} \textbf{Table 1} \quad Crystallographic data for Yb(\mu-RS-pba)_4Yb(HBpz_3)_2 (1), Ho(\mu-RS-pba)_4Ho(HBpz_3)_2 (2), Gd(\mu-RS-pba)_4Gd(HBpz_3)_2 (3), Nd(\mu-RS-pba)_4-Nd(HBpz_3)_2 (4), Dy(\mu-RS-pba)_4Dy(HBpz_3)_2 (5) and Dy(\mu-S-pba)_4Dy(HBpz_3)_2 (6) \end{array} \right.$

	1	2	3	4	5	6
Formula	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -	C ₅₈ H ₆₄ B ₂ N ₁₂ O ₈ -
	Yb ₂	Ho ₂	Gd ₂	Nd ₂	Dy ₂	Dy ₂
M	1424.91	1408.69	1393.34	1367.32	1403.83	1403.83
<i>T</i> /°C	23	23	23	23	23	-73
λ (Mo-K _a)/Å	0.71069	0.71069	0.71069	0.71069	0.71069	0.71069
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P2_1$
a/Å	11.551(2)	11.587(3)	11.610(3)	11.661(2)	11.589(5)	13.0708(13)
b/Å	12.222(3)	12.207(4)	12.185(3)	12.258(2)	12.174(5)	24.8098(18)
c/Å	12.6247(17)	12.622(3)	12.622(3)	12.637(2)	12.633(4)	19.2494(18)
a/°	80.159(16)	80.31(3)	80.72(2)	80.239(14)	80.52(3)	90
βl°	68.300(12)	68.43(2)	68.804(17)	68.926(13)	68.49(3)	103.903(4)
γl°	66.306(16)	66.11(2)	65.780(19)	65.244(13)	66.12(3)	90
$V/Å^3$	1515.9(5)	1517.7(7)	1518.1(6)	1530.3(5)	1515.9(110)	6059.4(9)
Ζ	1	1	1	1	1	4
$ ho calc./Mg m^{-3}$	1.561	1.541	1.524	1.484	1.538	1.539
μ (Mo-K _a)/mm ⁻¹	3.128	2.650	2.228	1.739	2.508	2.510
$R1(F^2: F^2 > 2\sigma(F^2))$	0.038	0.049	0.047	0.050	0.065	0.093
$wR2(F^2: all data)$	0.111	0.152	0.132	0.138	0.186	0.172

the conditions are similar to those for the mononuclear complex ³ except that a different molar ratio of 1:1:2 (Ln : HBpz₃ : pba) was used, as described below.

To an aqueous solution of $LnCl_3 \cdot 6H_2O$ was added an aqueous solution of KHBpz₃ and an ethanolic solution of either K(*S*-pba) or K(*RS*-pba) with a molar ratio of 1:1:2 ($Ln^{3+}:$ HBpz₃: pba) in a beaker. The mixture was stirred for 1 h. The white precipitate obtained was filtered off, dried under vacuum and recrystallized from dichloromethane–hexane solution. Single crystals suitable for X-ray analysis of [$Ln_2{\mu-(RS-pba)}_4-(HBpz_3)_2$] (Ln = Nd, Gd, Dy, Ho and Yb) and [$Dy_2{\mu-(S-pba)}_4-(HBpz_3)_2$] were obtained by slow evaporation of the dichloromethane–hexane solution.

The formation of the dinuclear $[Ln_2\{\mu-(S- \text{ or } RS-\text{pba})\}_4$ -(HBpz₃)₂] complexes was confirmed by elemental analysis and/ or ESI-MS measurements on a Perkin Elmer API-III spectrometer. The *m*/*z* for the main peaks observed for the Ho–Ho and Nd–Nd complexes are 1409 for { $[Ho_2\{\mu-(RS-\text{pba})\}_4(\text{HBpz}_3)_2]$ + H⁺} and 1367 for { $[Nd_2\{\mu-(RS-\text{pba})\}_4(\text{HBpz}_3)_2]$ + H⁺}, respectively.

Elemental analysis: $[Yb_2{\mu-(RS-pba)}_4(HBpz_3)_2]$; Anal. Found: C, 48.9; H, 4.43; N 11.5%. Calcd for C₅₈H₆₄N₁₂O₈-B₂Yb₂: C, 48.7; H, 4.66; N, 11.7%. [Yb₂{μ-(S-pba)}₄(HBpz₃)₂]; Anal. Found: C, 49.0; H, 4.49; N 11.7%. Calcd for C₅₈H₆₄-N₁₂O₈B₂Yb₂: C, 48.7; H, 4.66; N, 11.7%. [Ho₂{µ-(RS-pba)}₄-(HBpz₃)₂]; Anal. Found: C, 49.4; H, 4.33; N 11.8%. Calcd for $C_{58}H_{64}N_{12}O_8B_2HO_2$: C, 49.4; H, 4.72; N, 11.9%. [Ho₂{ μ -(S-pba)}₄-(HBpz₃)₂]; Anal. Found: C, 49.5; H, 4.56; N 11.7%. Calcd for C₅₈H₆₄N₁₂O₈B₂Ho₂: C, 49.4; H, 4.72; N, 11.9%. [Dy₂-{µ-(S-pba)}₄(HBpz₃)₂]; Anal. Found: C, 49.3; H, 4.48; N 11.9%. Calcd for C₅₈H₆₄N₁₂O₈B₂Dy₂: C, 49.6; H, 4.60; N, 11.9%. [Gd₂{µ-(*RS*-pba)}₄(HBpz₃)₂]; Anal. Found: C, 50.6; H, 4.51; N 12.2%. Calcd for $C_{58}H_{64}N_{12}O_8B_2Gd_2$: C, 49.9; H, 4.77; N, 12.1%. [Nd₂{µ-(S-pba)}₄(HBpz₃)₂]; Anal. Found: C, 50.4; H, 4.66; N 13.0%. Calcd for C₅₈H₆₄N₁₂O₈B₂Nd₂: C, 51.0; H, 4.72; N, 12.3%. [Nd₂{µ-(*RS*-pba)}₄(HBpz₃)₂]; Anal. Found: C, 51.2; H, 4.87; N 10.46%. Calcd for C₅₈H₆₄N₁₂O₈B₂Nd₂: C, 51.0; H, 4.72; N, 12.3%. [Ho(pba)(HBpz₃)₂]; Anal. Found: C, 44.6; H, 4.52; N 21.3%. Calcd for $C_{28}H_{31}N_{12}O_2B_2H_0$: C, 44.6; H, 4.14; N, 22.3%. [Er(pba)(HBpz₃)₂]; Anal. Found: C, 42.0; H, 4.03; N 19.0%. Calcd for C₂₈H₃₁N₁₂O₂B₂Er·CH₂Cl₂·0.17C₆H₁₄: C, 42.1; H, 4.16; N, 19.6%.

Measurements

Absorption spectra were measured on a Perkin Elmer Lamda-19 spectrophotometer. CD data were collected on a Jasco J-720W spectropolarimeter. MCD spectra were recorded on a Jasco J-720W spectropolarimeter in a magnetic field of 1.5 T at room temperature. An attempt at CD measurement for $[Ho(HBpz_3)_2(S-pba)]$ failed, probably because the CD intensity was too small to be observed, as inferred from the vicinal chirality.

X-Ray structure determination

[Ln₂{ μ -(*RS*-pba)}₄(HBpz₃)₂] (Ln = Nd, Gd, Dy, Ho and Yb) complexes. A colorless crystal of each [Ln₂{ μ -(*RS*-pba)}₄-(HBpz₃)₂] (Ln = Yb, Ho, Dy, Gd and Nd) complex was sealed in a glass capillary tube to prevent possible efflorescence. The X-ray intensities ($2\theta_{max} = 60^{\circ}$) were measured on a Rigaku AFC-5R four circle diffractometer at 23 °C. The structures were solved by the direct methods using the SHELXS86 program,¹² and refined on F^2 against all reflections by full-matrix leastsquares techniques using SHELXL97.¹³ All non-hydrogen atoms were treated anisotropically. All calculations were carried out using the TeXsan software package.¹⁴

[Dy₂{\mu-(*S***-pba)}₄(HBpz**₃)₂**] complex.** A colorless crystal of $[Dy_2{\mu-(S-pba)}_4(HBpz_3)_2]$ was mounted on a loop. All measurements were made on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochromated Mo-K α radiation at -73 °C. The structure solutions and refinements were performed as described for the racemic complexes. See Table 1 for all crystallographic data.

CCDC reference numbers 210009-210014.

See http://www.rsc.org/suppdata/dt/b3/b304928k/ for crystallographic data in CIF or other electronic format.

Results and discussion

Synthesis of [Ln(S- or RS-pba)(HBpz₃)₂] and [Ln₂{µ-(S- or RS-pba)}₄(HBpz₃)₂] complexes

The synthetic method for mononuclear $[Ln(S- \text{ or } RS-\text{pba})_4$ -(HBpz₃)₂] (Method A) gave both mononuclear (Ho to Yb) and dinuclear $[Ln_2{\mu-(S- \text{ or } RS-\text{pba})}_4(HBpz_3)_2]$ (Nd to Dy) complexes. We could not synthesize mononuclear complexes for Nd to Dy; only the dinuclear complexes were obtained by employing Method A (even by adding an excess amount of KHBpz₃), in contrast to the fact that a series of mononuclear acetate bridged Ln(III) complexes¹⁵ have been obtained. This means that the formation reaction in Method A for the lighter Ln complexes proceeds according to eqn. (2), but not to eqn. (1).

 $[Ln(H_2O)_n]^{3+} + 2HBpz_3^- + pba^- \rightarrow [Ln(HBpz_3)_2(pba)] + nH_2O \quad (1)$

$4[Ln(H_2O)_n]^{3+} + 8HBpz_3^- + 4pba^- \rightarrow [Ln_2(\mu-pba)_4(HBpz_3)_2] + 2[Ln(HBpz_3)_3] + 4nH_2O \quad (2)$

However, with the stoichiometric molar ratio 1:1:2 (Ln³⁺: KHBpz₃ : pba) we could synthesize a series of dinuclear complexes (Nd to Yb) by an easier method under milder or ambient conditions compared to those with a molar ratio 1:1:2.2 (Ln³⁺ : KHBpz₃ : CH₃COO⁻) under inert conditions in boiling THF solution for $[Y_2{\mu-(O_2CCH_3)}_4(HBpz_3)_2]$.⁶ The corresponding dinuclear acetate bridged Yb(III) complex $[Yb_2{\mu-(O_2CCH_3)}_4-$ (HBpz₃)₂] could not be obtained, and only the mononuclear acetate Yb complex [Yb(O₂CCH₃) (HBpz₃)₂] was isolated by Method B. From these facts, the formation of mononuclear and dinuclear complexes is suggested to depend on the ionic radii of the lanthanide ions and/or to be controlled by the ratio of Ln : KHBpz₃ : pba. In other words, this may result from two sources; the larger lanthanide ions prefer the formation of [Ln(HBpz₃)₃] to that of the mononuclear complexes as seen for the synthesis of the Cr-Ln complexes³ and the pba bridged dinuclear complexes may be more stable than the acetate bridged ones. In the course of the competitive reactions between eqn. (1) and (2) for the lighter Ln complexes, the reaction via eqn. (2) is more favorable than that via eqn. (1).

X-Ray structure analysis

Table 1 shows the crystallographic data for the Ln-Ln complexes. All the *meso-(RS-pba)* complexes crystallize in the $P\bar{1}$ space group with a triclinic crystal system. Fig. 1a and b show the ORTEP¹⁶ views of the complex $[Ho_2{\mu-(RS-pba)}_4 (HBpz_3)_2$ where the phenyl and ethyl groups of the pba and the HBpz₃ groups are omitted respectively, for clarity. The holmium ion is seven-coordinate with four oxygen atoms from four µ-pba's and three nitrogen atoms from HBpz₃ as found for the Y, Sm, Eu, Gd, Tb complexes.^{6,8,10} Two Ho ions are connected by four pba bridging groups. This μ -(RS-pba) complex is not a racemic mixture of the $(\mu$ -*R*-pba)₄ and $(\mu$ -*S*-pba)₄ complexes, but a meso-Ho{ $(\mu$ -R-pba)₂(μ -S-pba)₂}Ho complex which is centrosymmetric with an inversion center at the midpoint between the Ln · · · Ln line, as found for the $[(H_2O)_4Ln(\mu-DL-ala)_4-$ Ln(H₂O)₄] complexes.⁸ The analogous Yb-Yb, Dy-Dy, Gd-Gd and Nd-Nd complexes are isostructural with the Ho-Ho one as shown in Fig. S1-S4, † respectively.

Of the two possible conformational isomers, with respect to the combination of the R- and S-pba in the bridging moiety, only the centrosymmetric cis isomer with a R-R-S-S assembly was stereospecifically formed for all of the complexes, but not the trans isomer with two mirror planes in a R-S-R-S assembly. This fact suggests that the cis positioning of two R-pba or S-pba is more favorable than the trans one probably owing to the steric contacts between the bulky substituents of the adjacent pba's. In the lanthanide(III) (Yb, Ho, Dy, Gd and Nd) complexes with HBpz₃, the coordination of the four carboxylates is classified as Z,Z-type bridging didentate.¹⁷ Four CH- π interactions between the methyl protons of the ethyl groups of the pba and the phenyl group in the adjacent pba are found (vide infra). This steric control from the four CH $-\pi$ interactions may stabilize seven-coordination of the $\mathrm{Ln}^{\mathrm{III}}$ ion in the dinuclear system. The polyhedron around the Ln^{III} ions is a monocapped trigonal prism (TPRS-7) as described for the corresponding acetato bridged Y complex.6

Table 2 shows the selected bond lengths of the Ln–Ln complexes. The Ln–O and Ln–N distances increase from Yb to Nd in a regular manner, becoming longer with increasing ionic radius of the Ln^{III} ion as expected. The Yb–O and Nd–O distances range from 2.214(4)–2.298(5) Å and 2.362(5)–2.423(5) Å, respectively. The Yb–N and Nd–N distances range from 2.411(4)–2.446(4) Å and 2.565(5)–2.577(5) Å. However, neither O–Ln–O nor N–Ln–N angles show regular variation along the series. The non-bonding Yb · · · Yb (4.1022(7) Å), Ho · · · Ho

Fig. 1 ORTEP views of $[Ho_2{\mu-(RS-pba)}_4(HBpz_3)_2]$ where the phenyl and ethyl groups (a) and the HBpz_3 group (b) are omitted for clarity.

(4.0817(11) Å), Dy · · · Dy (4.0651(15) Å), Gd · · · Gd (4.0290(9) Å) and Nd · · · Nd (4.0363(9) Å) distances in [Ln₂-(μ -*RS*-pba)₄(HBpz₃)₂] are comparable to that (4.037 Å) in [Y₂(μ -CH₃CO₂)₄(HBpz₃)₂], but are longer than the Gd · · · Gd distances (3.9430(4) and 3.9148(4) Å, respectively) in [Gd₂-(μ -OBz)₄(HBpz₃)₂] (OBz = benzoate) and [Gd₂(μ -*p*-OBzCl)₄-(HBpz₃)₂],¹⁰ and shorter than the Nd · · · Nd distances (4.412 and 4.439 Å) in dimeric [Nd₂(L- and DL- α -Ala)₄(H₂O)₈](ClO₄).⁶ ⁸ The Ln · · · Ln distances increase from Nd to Yb almost regularly. It is noted that the larger the ionic radius of the central Ln ion, the shorter the Ln · · · Ln distance with the exception of the Nd complex.

For the chiral S-pba Ln-Ln complexes, it was hard to obtain crystals suitable for X-ray analysis. However, fortunately, we could crystallize chiral $[Dy_2\{\mu-(S-pba)_4\}(HBpz_3)_2]$ suitable for single crystal X-ray analysis. Two crystallographically independent molecules in the unit cell of the chiral S-pba Dy-Dy complex are structurally somewhat different from each other as mentioned below (see also Table 2). One of them is shown in Fig. 2. Each Dy(III) ion is linked by four oxygen atoms from the bridging pba. In addition to the normal Dy-O bonding, two oxygens are bonded in a bifurcated three center (Dy-(µ-O) · · · Dy) mode which belongs to a bridging tri- CH_3CO_2), in the Ce(III) complex, $[Ce_2(\mu-CH_3CO_2)_6(phen)_2]$. Thus, this complex was found to have each pseudo-eightcoordinated Dy(III) ion in contrast to the meso-[Dy₂{ μ -(RSpba)}₄(HBpz₃)₂] complexes with centrosymmetric ill-defined

1		2		5		6				3		4	
$\frac{1}{Ln \cdots Ln dis}$	distance												
$Yb\cdotsYb'$	4.1022(7)	Но ••• Но′	4.0817(11)	$Dy \cdots Dy^{\prime}$	4.0651(15)	$Dy1 \cdots Dy2$	3.8578(9)	Dy11 · · · Dy12	3.9590(9)	$Gd \cdots Gd'$	4.0290(9)	$Nd \cdots Nd'$	4.0363(9)
Ln–O bond le	engths												
Yb-O1	2.265(4)	Ho–O1	2.293(5)	Dy-O1	2.304(5)	Dy1–O2	2.378(10)	Dy11–O12	2.361(14)	Gd-O1	2.329(4)	Nd-O1	2.374(5)
Yb–O2′	2.236(4)	Ho–O2′	2.275(4)	Dy–O2′	2.290(5)	Dy2–O1 Dy1–O3	2.237(9) 2.308(9)	Dy12=011 Dy11=013	2.268(10) 2.291 (11)	Gd-O2'	2.328(3)	Nd-O2'	2.395(5)
V1 02	2 200(5)	U 02	2.22((0)	D 01	2 2 4 2 (7)	Dy2-O4	2.368(10)	Dy12014	2.308(12)	G 1 03	2 200(4)	N1 02	2 422(5)
Y b03	2.298(5)	Ho-03	2.326(6)	Dy-O3	2.342(7)	Dy1-05 Dy2-06	2.311(10) 2 333(9)	Dy11-015 Dy12-016	2.304(9)	Gd-03	2.380(4)	Nd-03	2.423(5)
Yb–O4′	2.214(4)	Ho–O4′	2.248(5)	Dy-O4'	2.263(6)	Dy1-07	2.306(10)	Dy12-010 Dy11-017	2.287(9)	Gd–O4′	2.307(4)	Nd–O4′	2.362(5)
						Dy208	2.255(10)	Dy12018	2.294(10)				
				$D_{y}^{2}-O_{z}^{3}$	2 731(10)	Dy1–O1	2.593(9)	Dy11–O11	2.736(11)				
				Dy2-03	2.751(10)								
Non-bonding	Ln · · · O dist	tances											
$Yb \cdots O2$	3.748(5)	Но • • • О2	3.753(6)	$Dy \cdots O2$	3.771(7)			Dy12 ••• O13	3.09(1)	$Gd \cdots O2$	3.782(4)	$Nd \cdots O4$	3.763(6)
Yb ··· O4	3.416(6)	Но ••• О4	3.272(7)	Dy ··· O4	3.173(9)					$Gd \cdots O4$	2.992(5)	$Nd \cdots O2$	2.945(6)
Ln–N bond le	engths												
Yb-N12	2.446(4)	Ho-N12	2.488(5)	Dy-N12	2.492(6)	Dy1-N12	2.469(13)	Dy11-N112	2.470(14)	Gd-N12	2.522(4)	Nd-N12	2.577(5)
				2		Dy2-N17	2.462(11)	Dy12-N117	2.459(11)				
Yb–N22	2.411(4)	Ho–N22	2.450(5)	Dy–N22	2.468(6)	Dy1–N22	2.456(12)	Dy11–N122	2.497(12)	Gd–N22	2.508(4)	Nd–N22	2.565(5)
Yb-N32	2 436(4)	Ho-N32	2 478(5)	Dv1-N32	2 490(6)	Dy2-N27 Dy2-N35	2.488(12) 2 500(12)	Dy12 - N127 Dy11 - N132	2.493(12) 2 511(10)	Gd-N32	2 510(4)	Nd-N32	2 568(5)
10 1102	2.150(4)	110 1102	2.175(5)	291 1132	2.155(0)	Dv2-N37	2.496(13)	Dy12–N137	2.498(14)	Gu 1152	2.510(4)	110 1102	2.500(5)

. . . 9

Fig. 2 ORTEP views of $[Dy_2{\mu-(S-pba)}_4(HBpz_3)_2]$ where the phenyl and ethyl groups (a) and the HBpz_3 group (b) are omitted for clarity.

seven-coordination. The average non-bonding Dy \cdots Dy distance is 3.9084 Å, which is shorter than that (4.0651(15) Å) in the *meso*-Dy-Dy complex.

Moreover, the Dy \cdots (µ-O) non-bonding distance (for example, Dy12 · · · O13 is 3.09(1) Å) in the *chiral*-Dy-Dy complex is much shorter than the shortest non-bonding Dy \cdots O2 and Dy ... O4 distance 3.771(7) Å and 3.173(9) Å in the meso-Dy-Dy complex. Shortening in the Dy · · · Dy distance is associated with shortening in the Dy · · · O one. One of the two oxygen atoms involved in the non-bonding interaction in the Dy– $(\mu$ -O) · · · Dy of the chiral complex occupies the capping position on the lateral face of four oxygen atoms around the Dy, forming a bicapped trigonal prism (TPRS-8). This indicates the seven- and pseudo-eight-coordinate character in the meso- and chiral-Dy-Dy dinuclear complexes, respectively, though another chiral complex in the unit cell has seven- and pseudo-eight-coordinated Dy moieties (Table 2 and Fig. S5[†]). These differences in interatomic distance may result from differences in the packing among the bridging pba's between the meso- and chiral-(S-pba) Dy-Dy complexes. That is, there exists four weak CH– π interactions between the methyl proton in the ethyl group of one pba and the phenyl ring of the adjacent pba for the meso-pba complexes (vide supra; Fig. 3), since the carbon(methyl)-carbon(phenyl) distance between them is found to be about 3.7 Å. However, there is no CH- π interaction in the chiral-(S-pba) Dy-Dy complex. Such a difference in the intramolecular interactions may lead to the difference in the

Fig. 3 Molecular models of only the bridging moiety (a) $[Dy_{2}{\mu-(RS-pba)}_{4}(HBpz_{3})_{2}]$ complex with weak CH- π interactions between the methyl proton in the ethyl group of the pba and the phenyl ring of the adjacent pba for the *rac*-pba complex. (b) $[Dy_{2}{\mu-(S-pba)}_{4}(HBpz_{3})_{2}]$ has no such interactions.

non-bonding Dy \cdots Dy as well as the Dy \cdots O distances. The intramolecular CH– π interaction could prevent two Dy moieties from approaching each other and would maintain the high symmetry of the bridging moiety in the *meso-(RS-pba)* Ln–Ln complexes. Shortening of the Ln \cdots O distances with increasing Ln^{III} ion size from Yb to Nd may be parallel to a decrease in the non-bonding Ln \cdots Ln distance, or may reflect the tendency of increasing coordination number with increasing Ln ion size as shown in Table 2. Taking into consideration these facts, there might be some attractive interatomic nonbonding interaction between the Ln and O as also found for [(hfac)₃Ln(bpypz)Cr(acac)₃] (hfac = hexafluoroacetylacetone, bpypz = 3,5-bis(2-pyridyl)pyrazolate) complexes.¹⁸

For the chiral complexes, there are two kinds of possible configurational chirality in the tetrakis-carboxylate bridged dinuclear complexes. One is a twisted configuration around the metal-metal vector in the bridging moiety. However, the X-ray structure of the present chiral Dy-Dy complex demonstrates the existence of an almost eclipsed configuration with a mirror plane, resulting in an achiral bridging moiety as found in corresponding types of transition metal complexes such as $[Rh_2(O_2CR)_4L_2]$ where R = CPh(OH)H and $CPh(OMe)H^{.11}$ The other is a new type arising from the relative skew disposition of two $B \cdots Dy$ vectors. That is, the $B \cdots Dy \cdots$ Dy \cdots B arrangement in the *chiral-(S-pba)* Dy–Dy complex is bent with an average torsion angle of 50°, in contrast to the linear arrangement with a torsion angle of 180° in the meso-(RS-pba) Dy-Dy complex. According to the definition that one $B \cdots Dy$ line is overlapped with the other $B \cdots Dy$ line by a clockwise (C) or anticlockwise (A) rotation around the Dy ... Dy line, the configurational chirality in the chiral-

Complex	Transition (λ /nm) $g = \Delta \varepsilon / \varepsilon$	$Ln(\mu-S-pba)_4$	$\operatorname{Ln} g = \Delta \varepsilon / \varepsilon$	Cr(ox)Ln g(Ln-Ln)/g(Cr-LN)	
Yb	$^{2}\text{F}_{7/2} \longrightarrow ^{2}\text{F}_{5/2}$ (975)	2.8×10^{-4}	6.0×10^{-2}	4.7×10^{-3}	
Но	${}^{5}I_{8} \longrightarrow {}^{5}I_{5} (890)$	6.0×10^{-5}	1.2×10^{-4}	$5.0 imes 10^{-1}$	
Dy	${}^{6}H_{15/2} \longrightarrow {}^{6}F_{7/2} (900)$	2.5×10^{-4}	2.0×10^{-3}	1.3×10^{-1}	
Nd	${}^{4}I_{9/2} \longrightarrow {}^{4}F_{5/2} (800)$	2.6×10^{-4}	6.6×10^{-4}	$3.7 imes 10^{-1}$	

(S-pba) Dy–Dy complex is described as C in Fig. 4. This new configurational chirality will be discussed in connection with the CD in the 4f–4f transitions below.

Fig. 4 Views of the molecular models along the Dy–Dy line showing the configurational chirality (*C*) and achirality, respectively. (a) $[Dy_2-{\mu-(S-pba)}_4(HBpz_3)_2]$ complex with a bent $B \cdots Dy \cdots Dy \cdots B$ arrangement (*ca.* 50°). (b) $[Dy_2{\mu-(RS-pba)}_4(HBpz_3)_2]$ complex with a linear $B \cdots Dy \cdots Dy \cdots B$ arrangement (180°).

NIR chiroptical study

The NIR absorption, MCD and CD spectra of $[Ln_3]\mu$ -(S- or RS-pba)}₄(HBpz₃)₂] (Ln = Yb, Ho, Dy and Nd) complexes were measured in CH_2Cl_2 solution. For $[Yb_2{\mu-(RS-pba)}_4(HBpz_3)_2]$, the strongest peak of the NIR absorption spectra in the ${}^{2}F_{7/2}$ – ${}^{2}F_{5/2}$ transitions are observed around 975 nm similar to those of [(acac)₂Cr(µ-ox)Yb(HBpz₃)₂] and [Yb(RS-pba)(HBpz₃)₂] as in Fig. 5. In the corresponding region, MCD spectra show a similar behavior to each other; a strong couplet of (-) and (+) at the longer wavelength is observed. The other shorter wavelength absorption and MCD peaks are different from each other as in Fig. 5. The complex $[Yb_2{\mu-(S-pba)}_4(HBpz_3)_2]$ shows three CD bands corresponding to the ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ transitions in the 900-1000 nm region. The CD pattern and sign sequences are different from those of the $(\Lambda - \Delta)$ -Cr(μ -ox)Yb³ and Λ -[Yb(DOTMA)]⁻ (DOTMA = 1*R*,4*R*,7*R*,10*R*- α , α' , α'' , α''' -tetramethyl-1,4,7,10-tetraazacvclododecane-1,4,7,10-tetraacetate) complexes.¹⁹ This may be due to the difference in coordination number or crystal field among the Yb(O)₄(N)₃, Yb(O)₂(N)₆ and Yb(O)₄(N)₄ chromophores. The dissymmetry factor ($g = \Delta \varepsilon_{\text{ext}} / \varepsilon_{\text{max}}$) at 975 nm for the Yb–Yb complex is *ca*. 2.8×10^{-4} which is small compared to that of $(\Lambda - \Delta)$ -[(acac)₂-Cr(ox)Yb(HBpz₃)₂] as well as that of the mononuclear [Yb- $(HBpz_3)_2(S-pba)]^{3a}$ This observed difference in g values between the dinuclear and mononuclear S-pba Yb complexes is explained in relation to the configurational chirality as discussed below.

For the other chiral Ln–Ln complexes, the NIR CD components (Fig S6–S8†) are assigned to the following 4f–4f transitions in comparison with the NIR absorption spectra of the *meso*-Ln–Ln complexes; ${}^{5}I_{8} \rightarrow {}^{5}I_{5}$ at 890 nm for the Ho–Ho, ${}^{6}H_{15/2} \rightarrow {}^{6}F_{7/2}$, ${}^{6}H_{15/2} \rightarrow {}^{6}F_{5/2}$ and ${}^{6}H_{15/2} \rightarrow {}^{6}F_{3/2}$ at 700–950 nm for the Dy–Dy, and ${}^{4}I_{9/2} \rightarrow {}^{2}H_{9/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}F_{5/2}$ at 700–850 nm, ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ at 850–950 nm for the Nd–Nd complex. The assignments are confirmed by the MCD measurements as in Fig. S6–S8.†

Fig. 5 NIR absorption (top) and CD (middle) spectra of $[Yb_2{\mu-(S-pba)}_4(HBpz_3)_2]$ and MCD (bottom) spectra of $[Yb_2{\mu-(RS-pba)}_4(HBpz_3)_2]$ in CH₂Cl₂ at room temperature.

These CD intensities may arise from vicinal chirality due to the asymmetric carbon in S-pba as well as the configurational one due to the skew B · · · Ln dispositions as found from the X-ray structure of the chiral Dy(S-pba)₄Dy complex (vide supra). In order to examine the CD origins, it is appropriate to compare the dissymmetry factors $g = \Delta \varepsilon_{ext} / \varepsilon_{max}$ for CD components in the Ln-Ln complexes as shown in Table 3. This is because these CD components are due to the same 4f-4f transitions common to those for the Cr-Ln complexes which are proposed to be a common criterion for the relation^{3b} between the CD signs and the absolute configuration around the $Ln(HBpz_3)_2(ox)$ moiety. Comparison between the ratios g(Ln-Ln)/g(Cr-Ln) and $g(Yb)/g(Cr-Yb)^3$ allow us to predict whether the 4f-4f CD for the Ln-Ln complexes arise from either configurational or vicinal chirality, irrespective of any type of 4f-4f transitions which are magnetic-dipole allowed for the Yb^{III} complexes or forbidden for the Ho^m, Dy^m and Nd^m complexes according to the selection rules.²⁰ The g(Ln-Ln) values for the Ho, Dy, and Nd complexes are not much different from the

corresponding g(Cr-Ln) ones as shown in Table 3. Moreover, the g(Ln-Ln)/g(Cr-Ln) ratios are similar to one another and much larger than the g(Yb)/g(Cr-Yb) ones. These facts suggest additional configurational contribution other than the vicinal one due to S-pba to CD intensity. In other words, configurational chirality due to the B · · · Ln skew dispositions produces about a ten times larger g(Ln-Ln)/g(Cr-Ln) ratio for the Ho, Dy, and Nd complexes than g(Yb)/g(Cr-Yb) (Table 3). The g(Yb-Yb)/g(Cr-Yb) for the Yb-Yb complex is about one hundredth of those for the other Ln-Ln complexes. This is probably due mostly to the vicinal chirality from the S-pba moiety in the Yb-Yb complex. As inferred from the fact that a series of the meso-Ln-Ln complexes shows Ln^{III} ion size dependent changes of the non-bonding Ln · · · O and Ln · · · Ln distances (vide supra), the S-pba Yb-Yb complex with the smallest Ln^{III} ion radius among them is assumed to be seven-coordinate with longer Ln ··· O and Ln ··· Ln distances like the meso Ln-Ln complexes rather than a pseudo-eight one, in line with a decreasing tendency of the coordination number from the other large Ln^{III} to the small Yb^{III}. Thus, the small g(Yb-Yb)/ g(Cr-Yb) is suggested to have an almost achiral configuration due to the B · · · Ln · · · B linear arrangement as found for the meso-Ln-Ln complexes. This may reflect the weak CD behaviors for the Yb(S-pba)₄Yb complex in solution. Further investigation is needed to clarify the structural differences among the Ln(S-pba)₄Ln complexes.

Conclusions

Synthesis of two series of mononuclear [Ln(S- or RS-pba)- $(HBpz_3)_2$ and dinuclear $[Ln_2\{\mu-(S-\text{ or } RS-\text{pba})\}_4(HBpz_3)_2]$ complexes are described, the formation of which depends on the lanthanide ionic radius and/or steric control of the pba. The X-ray structural analysis of some of the complexes demonstrate stereospecific formation of the R-R-S-S assembly in the bridging moiety of the meso- $(\mu - R, S - pba)_4$ complexes with seven-coordination and high symmetry. This ordered structure may result from weak CH- π interactions between one pba and the adjacent pba. The Dy(µ-S-pba)₄Dy complex is found to have configurational chirality due to the B · · · Ln skew bent arrangement from the X-ray analysis. Such a chiral configuration is corroborated by examining the dissymmetry factors of the chiral S-pba Ho, Dy, and Nd complexes. The smaller g value of the heavier Yb-Yb complex compared to that of the Cr-Yb complex may be due to vicinal chirality in the S-pba moiety. This fact reconfirms the configurational chiral assembly in the $Cr(\mu-ox)Ln$ complexes. Further comparative studies in relation to the structural, magnetic and spectroscopic properties between the *meso-(RS-pba)* and *chiral-(S-pba)* complexes are in progress in this laboratory.

References

- 1 (*a*) J.-C. G. Bünzil and C. Piguet, *Chem. Rev.*, 2002, **102**, 1897; (*b*) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland and J. A. K. Howard, *Chem. Rev.*, 2002, **102**, 1977 and references therein.
- 2 (a) T. Sanada, T. Suzuki and S. Kaizaki, J. Chem. Soc., Dalton, Trans., 1998, 959; (b) T. Sanada, T. Suzuki, T. Yoshida and S. Kaizaki, Inorg. Chem., 1998, **37**, 4712.
- 3 (a) M. A. Subhan, T. Suzuki and S. Kaizaki, J. Chem. Soc., Dalton, Trans., 2001, 492; (b) M. A. Subhan, T. Suzuki and S. Kaizaki, J. Chem. Soc., Dalton. Trans., 2002, 1416.
- 4 M. A. Subhan, T. Sanada, T. Suzuki and S. Kaizaki, *Inorg. Chim.* Acta, 2003, **353C**, 263.
- 5 (a) M. A. Subhan, H. Nakata, T. Suzuki, J.-H. Choi and S. Kaizaki, J. Lumin., 2003, 101, 307; (b) M. A. Subhan, T. Suzuki and S. Kaizaki, Mol. Cryst. Liq. Cryst., 379, 2002, 395.
- 6 D. L. Reger, J. A. Lindeman and L. Lebioda, *Inorg. Chem.*, 1988, 27, 3923.
- 7 A. Panagiotopoulous, S. P. Perlepes, E. Bakalbassis, I. Masson-Ramde, O. Khan, A. Terzis and C. P. Raptopoulou, *Inorg. Chem.*, 1995, 34, 4918.
- 8 T. Glowiak, J. Legendziewicz, E. Huskowaska and P. Gawryszewska, *Polyhedron*, 1996, **15**, 2939 and references therein.
- 9 D. L. Reger, S. J. Knox, J. A. Lindeman and L. Lebioda, Inorg. Chem., 1990, 29, 416.
- 10 U. P. Singh, S. Tyagi, C. L. Sharma, H. Görner and T. Weyhermüller, J. Chem. Soc., Dalton Trans., 2002, 4464.
- 11 (a) P. A. Agaskar, F. A. Cotton, L. R. Falvello and S. Hann, J. Am. Chem. Soc., 1986, 108, 1214; (b) F. A. Cotton, R. A. Walton, Multiple bonds between metal atoms, Clarendon Press, Oxford, 2nd edn., 1993 and references therein.
- 12 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 13 G. M. Sheldrick, SHELXL97, University of Gottingen, Germany, 1997.
- 14 TeXsan, Single Crystal Structure Analysis Software, ver. 1.9, Molecular Structure Corporation, The Woodlands, TX and Rigaku Co. Ltd., Akishima, Tokyo, 1998.
- 15 M. A. J. Moss and C. J. Jones, J. Chem. Soc., Dalton Trans., 1990, 581.
- 16 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 17 A. Ouchi, Y. Suzuki, Y. Ohki and Y. Koizumi, Coord. Chem. Rev., 1988, 92, 29.
- 18 R. Kawahata, T. Tsukuda, T. Yagi, M. A. Subhan, A. Fuyuhiro and S. Kaizaki, *Chem. Lett.*, 2003, in press.
- 19 L. Di Bari, G. Pintacuda and P. Salvadori, J. Am. Chem. Soc., 2000, 122, 5557; L. Di Bari, G. Pintacuda, P. Salvadori, R. S. Dickens and D. Parker, J. Am. Chem. Soc., 2000, 122, 9257.
- 20 F. S. Richardson, Inorg. Chem., 1980, 19, 2806.